Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 956
Filtrar
1.
J Neuropathol Exp Neurol ; 83(4): 238-244, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38412343

RESUMO

The pathobiology of tau is of great importance for understanding the mechanisms of neurodegeneration in aging and age-associated disorders such as Alzheimer disease (AD) and frontotemporal dementias. It is critical to identify neuronal populations and brain regions that are vulnerable or resistant to tau pathological changes. Pick disease (PiD) is a three-repeat (3R) tauopathy that belongs to the group of frontotemporal lobar degenerations. The neuropathologic changes of PiD are characterized by globular tau-positive neuronal intracytoplasmic inclusions, called Pick bodies, in the granule cells of the dentate gyrus and frontal and temporal neocortices, and ballooned neurons, named Pick neurons, in the neocortex. In the present study, we examined 13 autopsy-confirmed cases of PiD. Using immunohistochemistry for phospho-tau (AT8) and 3R tau isoform, all PiD cases demonstrated extensive lesions involving the hippocampus and neocortex. However, the lateral geniculate body (LGB) is spared of significant tau lesions in contrast to the neighboring hippocampus and other thalamic nuclei. Only 1 PiD case (7.7%) had tau-positive neurons, and 4 cases had tau-positive neurites (31%) in the LGB. By contrast, the LGB does consistently harbor tau lesions in other tauopathies including progressive supranuclear palsy, corticobasal degeneration, and AD.


Assuntos
Doença de Alzheimer , Neocórtex , Doença de Pick , Tauopatias , Humanos , Doença de Pick/patologia , Proteínas tau/metabolismo , Corpos Geniculados/metabolismo , Corpos Geniculados/patologia , Tauopatias/patologia , Neocórtex/patologia
2.
Neuropathol Appl Neurobiol ; 49(6): e12941, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37812040

RESUMO

Multiple system atrophy (MSA) is a neurodegenerative disorder characterised by a combined symptomatology of parkinsonism, cerebellar ataxia, autonomic failure and corticospinal dysfunction. In brains of MSA patients, the hallmark lesion is the aggregation of misfolded alpha-synuclein in oligodendrocytes. Even though the underlying pathological mechanisms remain poorly understood, the evidence suggests that alpha-synuclein aggregation in oligodendrocytes may contribute to the neurodegeneration seen in MSA. The primary aim of this review is to summarise the published stereological data on the total number of neurons and glial cell subtypes (oligodendrocytes, astrocytes and microglia) and volumes in brains from MSA patients. Thus, we include in this review exclusively the reports of unbiased quantitative data from brain regions including the neocortex, nuclei of the cerebrum, the brainstem and the cerebellum. Furthermore, we compare and discuss the stereological results in the context of imaging findings and MSA symptomatology. In general, the stereological results agree with the common neuropathological findings of neurodegeneration and gliosis in brains from MSA patients and support a major loss of nigrostriatal neurons in MSA patients with predominant parkinsonism (MSA-P), as well as olivopontocerebellar atrophy in MSA patients with predominant cerebellar ataxia (MSA-C). Surprisingly, the reports indicate only a minor loss of oligodendrocytes in sub-cortical regions of the cerebrum (glial cells not studied in the cerebellum) and negligible changes in brain volumes. In the past decades, the use of stereological methods has provided a vast amount of accurate information on cell numbers and volumes in the brains of MSA patients. Combining different techniques such as stereology and diagnostic imaging (e.g. MRI, PET and SPECT) with clinical data allows for a more detailed interdisciplinary understanding of the disease and illuminates the relationship between neuropathological changes and MSA symptomatology.


Assuntos
Ataxia Cerebelar , Atrofia de Múltiplos Sistemas , Neocórtex , Transtornos Parkinsonianos , Humanos , Atrofia de Múltiplos Sistemas/patologia , alfa-Sinucleína/metabolismo , Neocórtex/patologia
3.
Neuropathol Appl Neurobiol ; 49(5): e12937, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37740653

RESUMO

OBJECTIVE: Mesial Temporal Lobe Epilepsy-associated Hippocampal Sclerosis (MTLE-HS) is a syndrome associated with various aetiologies. We previously identified CD34-positive extravascular stellate cells (CD34+ cells) possibly related to BRAFV600E oncogenic variant in a subset of MTLE-HS. We aimed to identify the BRAFV600E oncogenic variants and characterise the CD34+ cells. METHODS: We analysed BRAFV600E oncogenic variant by digital droplet Polymerase Chain Reaction in 53 MTLE-HS samples (25 with CD34+ cells) and nine non-expansive neocortical lesions resected during epilepsy surgery (five with CD34+ cells). Ex vivo multi-electrode array recording, immunolabelling, methylation microarray and single nuclei RNAseq were performed on BRAFwildtype MTLE-HS and BRAFV600E mutant non-expansive lesion of hippocampus and/or neocortex. RESULTS: We identified a BRAFV600E oncogenic variant in five MTLE-HS samples with CD34+ cells (19%) and in five neocortical samples with CD34+ cells (100%). Single nuclei RNAseq of resected samples revealed two unique clusters of abnormal cells (including CD34+ cells) associated with senescence and oligodendrocyte development in both hippocampal and neocortical BRAFV600E mutant samples. The co-expression of the oncogene-induced senescence marker p16INK4A and the outer subventricular zone radial glia progenitor marker HOPX in CD34+ cells was confirmed by multiplex immunostaining. Pseudotime analysis showed that abnormal cells share a common lineage from progenitors to myelinating oligodendrocytes. Epilepsy surgery led to seizure freedom in eight of the 10 patients with BRAF mutant lesions. INTERPRETATION: BRAFV600E underlies a subset of MTLE-HS and epileptogenic non-expansive neocortical focal lesions. Detection of the oncogenic variant may help diagnosis and open perspectives for targeted therapies.


Assuntos
Epilepsias Parciais , Epilepsia do Lobo Temporal , Epilepsia , Neocórtex , Humanos , Epilepsia do Lobo Temporal/patologia , Neocórtex/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Hipocampo/patologia , Epilepsias Parciais/genética , Epilepsias Parciais/complicações , Epilepsias Parciais/patologia , Epilepsia/patologia , Esclerose/patologia , Imageamento por Ressonância Magnética
4.
Nat Neurosci ; 26(7): 1267-1280, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37336975

RESUMO

The role of different cell types and their interactions in Alzheimer's disease (AD) is a complex and open question. Here, we pursued this question by assembling a high-resolution cellular map of the aging frontal cortex using single-nucleus RNA sequencing of 24 individuals with a range of clinicopathologic characteristics. We used this map to infer the neocortical cellular architecture of 638 individuals profiled by bulk RNA sequencing, providing the sample size necessary for identifying statistically robust associations. We uncovered diverse cell populations associated with AD, including a somatostatin inhibitory neuronal subtype and oligodendroglial states. We further identified a network of multicellular communities, each composed of coordinated subpopulations of neuronal, glial and endothelial cells, and we found that two of these communities are altered in AD. Finally, we used mediation analyses to prioritize cellular changes that might contribute to cognitive decline. Thus, our deconstruction of the aging neocortex provides a roadmap for evaluating the cellular microenvironments underlying AD and dementia.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Neocórtex , Humanos , Doença de Alzheimer/metabolismo , Células Endoteliais/metabolismo , Encéfalo/metabolismo , Envelhecimento/patologia , Disfunção Cognitiva/patologia , Neocórtex/patologia
5.
Acta Neuropathol Commun ; 11(1): 88, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264457

RESUMO

Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) are distinct clinicopathological subtypes of frontotemporal lobar degeneration. They both have atypical parkinsonism, and they usually have distinct clinical features. The most common clinical presentation of PSP is Richardson syndrome, and the most common presentation of CBD is corticobasal syndrome. In this report, we describe a patient with a five-year history of Richardson syndrome and a family history of PSP in her mother and sister. A tau PET scan (18F-APN-1607) revealed low-to-moderate uptake in the substantia nigra, globus pallidus, thalamus and posterior cortical areas, including temporal, parietal and occipital cortices. Neuropathological evaluation revealed widespread neuronal and glial tau pathology in cortical and subcortical structures, including tufted astrocytes in the motor cortex, striatum and midbrain tegmentum. The subthalamic nucleus had mild-to-moderate neuronal loss with globose neurofibrillary tangles, consistent with PSP. On the other hand, there were also astrocytic plaques, a pathological hallmark of CBD, in the neocortex and striatum. To further characterize the mixed pathology, we applied two machine learning-based diagnostic pipelines. These models suggested diagnoses of PSP and CBD depending on the brain region - PSP in the motor cortex and superior frontal gyrus and CBD in caudate nucleus. Western blots of insoluble tau from motor cortex showed a banding pattern consistent with mixed features of PSP and CBD, whereas tau from the superior frontal gyrus showed a pattern consistent with CBD. Real-time quaking-induced conversion (RT-QuIC) using brain homogenates from the motor cortex and superior frontal gyrus showed ThT maxima consistent with PSP, while reaction kinetics were consistent with CBD. There were no pathogenic variants in MAPT with whole genome sequencing. We conclude that this patient had an unclassified tauopathy and features of both PSP and CBD. The different pathologies in specific brain regions suggests caution in diagnosis of tauopathies with limited sampling.


Assuntos
Degeneração Corticobasal , Neocórtex , Paralisia Supranuclear Progressiva , Tauopatias , Humanos , Feminino , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/genética , Tauopatias/diagnóstico por imagem , Tauopatias/patologia , Proteínas tau/genética , Proteínas tau/metabolismo , Emaranhados Neurofibrilares/patologia , Neocórtex/patologia
6.
Acta Neuropathol Commun ; 11(1): 80, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170361

RESUMO

Peroxisomes are eukaryotic organelles that rapidly change in number depending on the metabolic requirement of distinct cell types and tissues. In the brain, these organelles are essential for neuronal migration and myelination during development and their dysfunction is associated with age-related neurodegenerative diseases. Except for one study analysing ABCD3-positive peroxisomes in neurons of the frontal neocortex of Alzheimer disease (AD) patients, no data on other brain regions or peroxisomal proteins are available. In the present morphometric study, we quantified peroxisomes labelled with PEX14, a metabolism-independent peroxisome marker, in 13 different brain areas of 8 patients each either with low, intermediate or high AD neuropathological changes compared to 10 control patients. Classification of patient samples was based on the official ABC score. During AD-stage progression, the peroxisome density decreased in the area entorhinalis, parietal/occipital neocortex and cerebellum, it increased and in later AD-stage patients decreased in the subiculum and hippocampal CA3 region, frontal neocortex and pontine gray and it remained unchanged in the gyrus dentatus, temporal neocortex, striatum and inferior olive. Moreover, we investigated the density of catalase-positive peroxisomes in a subset of patients (> 80 years), focussing on regions with significant alterations of PEX14-positive peroxisomes. In hippocampal neurons, only one third of all peroxisomes contained detectable levels of catalase exhibiting constant density at all AD stages. Whereas the density of all peroxisomes in neocortical neurons was only half of the one of the hippocampus, two thirds of them were catalase-positive exhibiting increased levels at higher ABC scores. In conclusion, we observed spatiotemporal differences in the response of peroxisomes to different stages of AD-associated pathologies.


Assuntos
Doença de Alzheimer , Neocórtex , Humanos , Doença de Alzheimer/patologia , Peroxissomos/metabolismo , Peroxissomos/patologia , Catalase/metabolismo , Projetos Piloto , Neocórtex/patologia
7.
Brain ; 146(8): 3289-3300, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36883639

RESUMO

The current classification of sporadic Creutzfeldt-Jakob disease identifies six major subtypes mainly defined by the combination of the genotype at polymorphic codon 129 (methionine/M or valine/V) of the prion protein gene and the type (1 or 2) of misfolded prion protein accumulating in the brain (e.g. MM1, MM2, MV1, MV2, etc.). Here, we systematically characterized the clinical and histo-molecular features associated with the third prevalent subtype, the MV2 subtype with kuru plaques (MV2K), in the most extensive series collected to date. We evaluated neurological histories, cerebrospinal biomarkers, brain MRI and EEG results in 126 patients. The histo-molecular assessment included misfolded prion protein typing, standard histologic staining and immunohistochemistry for prion protein in several brain areas. We also investigated the prevalence and topographic extent of coexisting MV2-cortical features, the number of cerebellar kuru plaques and their effect on clinical phenotype. Systematic regional typing revealed a western blot profile of misfolded prion protein comprising a doublet of 19 and 20 kDa unglycosylated fragments, with the former more prominent in neocortices and the latter in the deep grey nuclei. The 20/19 kDa fragment ratio positively correlated with the number of cerebellar kuru plaques. The mean disease duration was exceedingly longer than in the typical MM1 subtype (18.0 versus 3.4 months). Disease duration correlated positively with the severity of pathologic change and the number of cerebellar kuru plaques. At the onset and early stages, patients manifested prominent, often mixed, cerebellar symptoms and memory loss, variably associated with behavioural/psychiatric and sleep disturbances. The cerebrospinal fluid prion real-time quaking-induced conversion assay was positive in 97.3% of cases, while 14-3-3 protein and total-tau positive tests were 52.6 and 75.9%. Brain diffusion-weighted MRI showed hyperintensity of the striatum, cerebral cortex and thalamus in 81.4, 49.3 and 33.8% of cases, and a typical profile in 92.2%. Mixed histotypes (MV2K + MV2-cortical) showed an abnormal cortical signal more frequently than the pure MV2K (64.7 versus 16.7%, P = 0.007). EEG revealed periodic sharp-wave complexes in only 8.7% of participants. These results further establish MV2K as the most common 'atypical' subtype of sporadic Creutzfeldt-Jakob disease, showing a clinical course that often challenges the early diagnosis. The plaque-type aggregation of the misfolded prion protein accounts for most of the atypical clinical features. Nonetheless, our data strongly suggest that the consistent use of the real-time quaking-induced conversion assay and brain diffusion-weighted MRI allows an accurate early clinical diagnosis in most patients.


Assuntos
Síndrome de Creutzfeldt-Jakob , Kuru , Neocórtex , Príons , Humanos , Síndrome de Creutzfeldt-Jakob/diagnóstico por imagem , Síndrome de Creutzfeldt-Jakob/genética , Kuru/metabolismo , Kuru/patologia , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Encéfalo/patologia , Príons/genética , Fenótipo , Neocórtex/patologia
8.
Epilepsy Behav ; 141: 109130, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36803874

RESUMO

BACKGROUND: Peri-ictal MRI abnormalities (PMA) frequently affect the cerebral cortex, hippocampus, pulvinar of the thalamus, corpus callosum, and cerebellum. In this prospective study, we aimed to characterize the spectrum of PMA in a large cohort of patients with status epilepticus. METHODS: We prospectively recruited 206 patients with SE and an acute MRI. The MRI protocol included diffusion weighted imaging (DWI), fluid-attenuated inversion recovery (FLAIR), arterial spin labeling (ASL), and T1-weighted imaging pre-and post-contrast application. Peri-ictal MRI abnormalities were stratified as either neocortical or non-neocortical. Amygdala, hippocampus, cerebellum, and corpus callosum were regarded as non-neocortical structures. RESULTS: Peri-ictal MRI abnormalities were observed in 93/206 (45%) of patients in at least one MRI sequence. Diffusion restriction was observed in 56/206 (27%) of patients, which was mainly unilateral in 42/56 (75%) affecting neocortical structures in 25/56 (45%), non-neocortical structures in 20/56 (36%) and both areas in 11/56 (19%) of patients. Cortical DWI lesions were located mostly in frontal lobes 15/25 (60%); non-neocortical diffusion restriction affected either the pulvinar of the thalamus or hippocampus 29/31 (95%). Alterations in FLAIR were observed in 37/203 (18%) of patients. They were mainly unilateral 24/37 (65%); neocortical 18/37 (49%), non-neocortical 16/37 (43%), or affecting both neocortical and non-neocortical structures 3/37 (8%). In ASL, 51/140 (37%) of patients had ictal hyperperfusion. Hyperperfused areas were located mainly in the neocortex 45/51 (88%) and were unilateral 43/51 (84%). In 39/66 (59%) of patients, PMA were reversible in one week. In 27/66 (41%), the PMA persisted and a second follow-up MRI was performed three weeks later in 24/27 (89%) patients. In 19/24 (79%) PMA were resolved. CONCLUSIONS: Almost half of the patients with SE had peri-ictal MRI abnormalities. The most prevalent PMA was ictal hyperperfusion followed by diffusion restriction and FLAIR abnormalities. Neocortex was most frequently affected especially the frontal lobes. The majority of PMAs were unilateral. This paper was presented at the 8th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures held in September 2022.


Assuntos
Neocórtex , Estado Epiléptico , Humanos , Estudos Prospectivos , Eletroencefalografia , Estado Epiléptico/diagnóstico por imagem , Estado Epiléptico/patologia , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Neocórtex/patologia , Marcadores de Spin
9.
Epilepsia ; 64(3): 692-704, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36617392

RESUMO

OBJECTIVE: Epilepsy surgery fails to achieve seizure freedom in 30%-40% of cases. It is not fully understood why some surgeries are unsuccessful. By comparing interictal magnetoencephalography (MEG) band power from patient data to normative maps, which describe healthy spatial and population variability, we identify patient-specific abnormalities relating to surgical failure. We propose three mechanisms contributing to poor surgical outcome: (1) not resecting the epileptogenic abnormalities (mislocalization), (2) failing to remove all epileptogenic abnormalities (partial resection), and (3) insufficiently impacting the overall cortical abnormality. Herein we develop markers of these mechanisms, validating them against patient outcomes. METHODS: Resting-state MEG recordings were acquired for 70 healthy controls and 32 patients with refractory neocortical epilepsy. Relative band-power spatial maps were computed using source-localized recordings. Patient and region-specific band-power abnormalities were estimated as the maximum absolute z-score across five frequency bands using healthy data as a baseline. Resected regions were identified using postoperative magnetic resonance imaging (MRI). We hypothesized that our mechanistically interpretable markers would discriminate patients with and without postoperative seizure freedom. RESULTS: Our markers discriminated surgical outcome groups (abnormalities not targeted: area under the curve [AUC] = 0.80, p = .003; partial resection of epileptogenic zone: AUC = 0.68, p = .053; and insufficient cortical abnormality impact: AUC = 0.64, p = .096). Furthermore, 95% of those patients who were not seizure-free had markers of surgical failure for at least one of the three proposed mechanisms. In contrast, of those patients without markers for any mechanism, 80% were ultimately seizure-free. SIGNIFICANCE: The mapping of abnormalities across the brain is important for a wide range of neurological conditions. Here we have demonstrated that interictal MEG band-power mapping has merit for the localization of pathology and improving our mechanistic understanding of epilepsy. Our markers for mechanisms of surgical failure could be used in the future to construct predictive models of surgical outcome, aiding clinical teams during patient pre-surgical evaluations.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Neocórtex , Humanos , Magnetoencefalografia/métodos , Eletroencefalografia/métodos , Neocórtex/patologia , Epilepsia/cirurgia , Imageamento por Ressonância Magnética , Epilepsia Resistente a Medicamentos/cirurgia , Resultado do Tratamento
10.
Neurobiol Dis ; 178: 106018, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36706927

RESUMO

This review article gives an overview on the molecular, cellular and network mechanisms underlying focal seizures in neocortical networks with developmental malformations. Neocortical malformations comprise a large variety of structural abnormalities associated with epilepsy and other neurological and psychiatric disorders. Genetic or acquired disorders of neocortical cell proliferation, neuronal migration and/or programmed cell death may cause pathologies ranging from the expression of dysmorphic neurons and heterotopic cell clusters to abnormal layering and cortical misfolding. After providing a brief overview on the pathogenesis and structure of neocortical malformations in humans, animal models are discussed and how they contributed to our understanding on the mechanisms of neocortical hyperexcitability associated with developmental disorders. State-of-the-art molecular biological and electrophysiological techniques have been also used in humans and on resectioned neocortical tissue of epileptic patients and provide deep insights into the subcellular, cellular and network mechanisms contributing to focal seizures. Finally, a brief outlook is given how novel models and methods can shape translational research in the near future.


Assuntos
Epilepsia , Neocórtex , Animais , Humanos , Neocórtex/patologia , Convulsões/metabolismo , Epilepsia/metabolismo , Neurônios/metabolismo , Modelos Animais de Doenças
11.
Ann Neurol ; 93(1): 184-195, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36331161

RESUMO

OBJECTIVE: The objective of this study was to evaluate the relationship between Parkinson's disease (PD) with dementia and cortical proteinopathies in a large population of pathologically confirmed patients with PD. METHODS: We reviewed clinical data from all patients with autopsy data seen in the Movement Disorders Center at Washington University, St. Louis, between 1996 and 2019. All patients with a diagnosis of PD based on neuropathology were included. We used logistic regression and multivariate analysis of covariance (MANCOVA) to investigate the relationship between neuropathology and dementia. RESULTS: A total of 165 patients with PD met inclusion criteria. Among these, 128 had clinical dementia. Those with dementia had greater mean ages of motor onset and death but equivalent mean disease duration. The delay between motor symptom onset and dementia was 1 year or less in 14 individuals, meeting research diagnostic criteria for possible or probable dementia with Lewy bodies (DLB). Braak Lewy body stage was associated with diagnosis of dementia, whereas severities of Alzheimer's disease neuropathologic change (ADNC) and small vessel pathology did not. Pathology of individuals diagnosed with DLB did not differ significantly from that of other patients with PD with dementia. Six percent of individuals with PD and dementia did not have neocortical Lewy bodies; and 68% of the individuals with PD but without dementia did have neocortical Lewy bodies. INTERPRETATION: Neocortical Lewy bodies almost always accompany dementia in PD; however, they also appear in most PD patients without dementia. In some cases, dementia may occur in patients with PD without neocortical Lewy bodies, ADNC, or small vessel disease. Thus, other factors not directly related to these classic neuropathologic features may contribute to PD dementia. ANN NEUROL 2023;93:184-195.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Neocórtex , Doença de Parkinson , Humanos , Corpos de Lewy/patologia , Doença de Parkinson/complicações , Doença por Corpos de Lewy/patologia , Neocórtex/patologia , Doença de Alzheimer/patologia
12.
Alzheimers Res Ther ; 14(1): 192, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36544221

RESUMO

INTRODUCTION: Cerebrospinal fluid (CSF) tau biomarkers are reliable diagnostic markers for Alzheimer's disease (AD). However, their strong association with amyloid pathology may limit their reliability as specific markers of tau neurofibrillary tangles. A recent study showed evidence that a ratio of CSF C-terminally truncated tau (tau368, a tangle-enriched tau species), especially in ratio with total tau (t-tau), correlates strongly with tau PET tracer uptake. In this study, we set to evaluate the performance of the tau368/t-tau ratio in capturing tangle pathology, as indexed by a high-affinity tau PET tracer, as well as its association with severity of clinical symptoms. METHODS: In total, 125 participants were evaluated cross-sectionally from the Translational Biomarkers of Aging and Dementia (TRIAD) cohort (21 young, 60 cognitively unimpaired [CU] elderly [15 Aß+], 10 Aß+ with mild cognitive impairment [MCI], 14 AD dementia patients, and 20 Aß- individuals with non-AD cognitive disorders). All participants underwent amyloid and tau PET scanning, with [18F]-AZD4694 and [18F]-MK6240, respectively, and had CSF measurements of p-tau181, p-tau217, and t-tau. CSF concentrations of tau368 were quantified in all individuals with an in-house single molecule array assay. RESULTS: CSF tau368 concentration was not significantly different across the diagnostic groups, although a modest increase was observed in all groups as compared with healthy young individuals (all P < 0.01). In contrast, the CSF tau368/t-tau ratio was the lowest in AD dementia, being significantly lower than in CU individuals (Aß-, P < 0.001; Aß+, P < 0.01), as well as compared to those with non-AD cognitive disorders (P < 0.001). Notably, in individuals with symptomatic AD, tau368/t-tau correlated more strongly with [18F]-MK6240 PET SUVR as compared to the other CSF tau biomarkers, with increasing associations being seen in brain regions associated with more advanced disease (isocortical regions > limbic regions > transentorhinal regions). Importantly, linear regression models indicated that these associations were not confounded by Aß PET SUVr. CSF tau368/t-tau also tended to continue to become more abnormal with higher tau burden, whereas the other biomarkers plateaued after the limbic stage. Finally, the tau368/t-tau ratio correlated more strongly with cognitive performance in individuals with symptomatic AD as compared to t-tau, p-tau217 and p-tau181. CONCLUSION: The tau368/t-tau ratio captures novel aspects of AD pathophysiology and disease severity in comparison to established CSF tau biomarkers, as it is more closely related to tau PET SUVR and cognitive performance in the symptomatic phase of the disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Neocórtex , Proteínas tau , Idoso , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Cognição , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Neocórtex/diagnóstico por imagem , Neocórtex/metabolismo , Neocórtex/patologia , Tomografia por Emissão de Pósitrons , Reprodutibilidade dos Testes , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/metabolismo
13.
J Neuropathol Exp Neurol ; 81(12): 953-964, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36269086

RESUMO

3R/4R-tau species are found in Alzheimer disease (AD) and ∼50% of Lewy body dementias at autopsy (LBD+tau); 4R-tau accumulations are found in progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). Digital image analysis techniques can elucidate patterns of tau pathology more precisely than traditional methods but repeatability across centers is unclear. We calculated regional percentage areas occupied by tau pathological inclusions from the middle frontal cortex (MFC), superior temporal cortex (STC), and angular gyrus (ANG) from cases from the University of Pennsylvania and the University of California San Diego with AD, LBD+tau, PSP, or CBD (n = 150) using QuPath. In both cohorts, AD and LBD+tau had the highest grey and white matter tau burden in the STC (p ≤ 0.04). White matter tau burden was relatively higher in 4R-tauopathies than 3R/4R-tauopathies (p < 0.003). Grey and white matter tau were correlated in all diseases (R2=0.43-0.79, p < 0.04) with the greatest increase of white matter per unit grey matter tau observed in PSP (p < 0.02 both cohorts). Grey matter tau negatively correlated with MMSE in AD and LBD+tau (r = -4.4 to -5.4, p ≤ 0.02). These data demonstrate the feasibility of cross-institutional digital histology studies that generate finely grained measurements of pathology which can be used to support biomarker development and models of disease progression.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Neocórtex , Paralisia Supranuclear Progressiva , Tauopatias , Substância Branca , Humanos , Proteínas tau/metabolismo , Substância Branca/patologia , Neocórtex/patologia , Tauopatias/patologia , Doença de Alzheimer/patologia , Paralisia Supranuclear Progressiva/patologia , Doença por Corpos de Lewy/patologia
14.
J Neuropathol Exp Neurol ; 81(12): 988-995, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36264253

RESUMO

The brain of a 58-year-old woman was included as a civilian control in an ongoing autopsy study of military traumatic brain injury (TBI). The woman died due to a polysubstance drug overdose, with Coronavirus Disease 2019 (COVID-19) serving as a contributing factor. Immunohistochemical stains for ß-amyloid (Aß), routinely performed for the TBI study, revealed numerous, unusual neocortical Aß deposits. We investigated the autopsied brains of 10 additional young patients (<60 years old) who died of COVID-19, and found similar Aß deposits in all, using two different Aß antibodies across three different medical centers. The deposits failed to stain with Thioflavin-S. To investigate whether or not these deposits formed uniquely to COVID-19, we applied Aß immunostains to the autopsied brains of COVID-19-negative adults who died with acute respiratory distress syndrome and infants with severe cardiac anomalies, and also biopsy samples from patients with subacute cerebral infarcts. Cortical Aß deposits were also found in these cases, suggesting a link to hypoxia. The fate of these deposits and their effects on function are unknown, but it is possible that they contribute to the neurocognitive sequelae observed in some COVID-19 patients. Our findings may also have broader implications concerning hypoxia and its role in Aß deposition in the brain.


Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , COVID-19 , Neocórtex , Humanos , Adulto , Feminino , Pessoa de Meia-Idade , Neocórtex/patologia , COVID-19/complicações , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Lesões Encefálicas Traumáticas/patologia , Hipóxia/patologia , Doença de Alzheimer/patologia
15.
Eur J Nucl Med Mol Imaging ; 49(13): 4298-4311, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35798978

RESUMO

PURPOSE: Depositions of tau fibrils are implicated in diverse neurodegenerative disorders, including Alzheimer's disease, and precise assessments of tau pathologies and their impacts on neuronal survival are crucial for pursuing the neurodegenerative tau pathogenesis with and without potential therapies. We aimed to establish an in vivo imaging system to quantify tau accumulations with positron emission tomography (PET) and brain atrophy with volumetric MRI in rTg4510 transgenic mice modeling neurodegenerative tauopathies. METHODS: A total of 91 rTg4510 and non-transgenic control mice underwent PET with a tau radiotracer, 18F-PM-PBB3, and MRI at various ages (1.8-12.3 months). Using the cerebellum as reference, the radiotracer binding in target regions was estimated as standardized uptake value ratio (SUVR) and distribution volume ratio (DVR). Histopathological staining of brain sections derived from scanned animals was also conducted to investigate the imaging-neuropathology correlations. RESULTS: 18F-PM-PBB3 SUVR at 40-60 min in the neocortex, hippocampus, and striatum of rTg4510 mice agreed with DVR, became significantly different from control values around 4-5 months of age, and progressively and negatively correlated with age and local volumes, respectively. Neocortical SUVR also correlated with the abundance of tau inclusions labeled with PM-PBB3 fluorescence, Gallyas-Braak silver impregnation, and anti-phospho-tau antibodies in postmortem assays. The in vivo and ex vivo 18F-PM-PBB3 binding was blocked by non-radioactive PM-PBB3. 18F-PM-PBB3 yielded a 1.6-fold greater dynamic range for tau imaging than its ancestor, 11C-PBB3. CONCLUSION: Our imaging platform has enabled the quantification of tau depositions and consequent neuronal loss and is potentially applicable to the evaluation of candidate anti-tau and neuroprotective drugs.


Assuntos
Doença de Alzheimer , Neocórtex , Fármacos Neuroprotetores , Animais , Camundongos , Proteínas tau/metabolismo , Prata/metabolismo , Tomografia Computadorizada por Raios X , Tomografia por Emissão de Pósitrons/métodos , Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Encéfalo/metabolismo , Camundongos Transgênicos , Neocórtex/patologia
16.
Neurotox Res ; 40(5): 1174-1190, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35819590

RESUMO

Depression is a leading cause of disability which at its worst leads to suicide. Its treatment relies on psychotherapy in combination with certain antidepressants (AD(s)) from various classes such as tricyclics, selective serotonin reuptake inhibitors, or serotonin and norepinephrine reuptake inhibitors (SNRIs). Among SNRIs, venlafaxine (VEN) is one such most commonly prescribed AD which is recently reported to be in the top 50 most prescribed drugs in the USA. Depression during pregnancy is a common condition, where prescribing an AD becomes necessary as untreated depression during pregnancy has its own complications for both mother and the child. This, probably, is why an incredible rise has been reported in prescribing ADs like VEN to pregnant women in the recent past, despite some studies, including the one from our own group, having reported the in-utero VEN-induced apoptotic neurodegeneration in the fetal neocortex and the consequent neurobehavioral anomalies in adulthood. However, there still exists a lack of insight into the effects of intrauterine exposures of VEN on other fetal brain regions like the hippocampus (HPC) and striatum (STR) and the consequent effects on their cognitive and emotional wellbeing in later life. Hence, this study has been conducted where pregnant Charles-Foster (CF) rats were oral gavaged with VEN (25, 40, and 50 mg/kg bw) from gestation day (GD) 05-19. On GD-19, half of the control and treated dams were euthanized to collect their fetuses. Fetal brains were dissected and processed for reactive oxygen species (ROS) estimation neurohistopathology and confocal microscopic studies. The remaining dams were allowed to deliver naturally, and litters were reared for up to 8 weeks then tested for their cognitive abilities by the Morris water maze test and for their emotionality by the Forced swimming test. Our results showed substantial neurocytoarchitectural deficits in both HPC and STR, along with enhanced ROS levels and apoptotic neurodegenerations. Furthermore, VEN-treated young rat offsprings displayed cognitive impairments and depressive behavior as the long-lasting impact of VEN in a dose-dependent manner. So it may be inferred that prenatal VEN-induced oxidative stress causes apoptotic neurodegeneration leading to neuronal loss in HPC and STR which consequently affects the development of the said brain areas resulting in impaired cognitive and emotional abilities of young adult offsprings. Therefore, extrapolating these findings in animal models, caution may be taken before prescribing VEN to pregnant women, especially during the sensitive phase of pregnancy.


Assuntos
Neocórtex , Efeitos Tardios da Exposição Pré-Natal , Inibidores da Recaptação de Serotonina e Norepinefrina , Animais , Feminino , Hipocampo/patologia , Humanos , Neocórtex/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Espécies Reativas de Oxigênio , Serotonina , Inibidores Seletivos de Recaptação de Serotonina/toxicidade , Inibidores da Recaptação de Serotonina e Norepinefrina/efeitos adversos , Cloridrato de Venlafaxina/toxicidade
17.
J Korean Med Sci ; 37(23): e195, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35698841

RESUMO

Lewy bodies (LBs) and Lewy neurites (LNs) are pathological hallmarks of Parkinson's disease (PD) or dementia with LBs (DLB). Incidental Lewy body disease (iLBD) is defined when LBs and LNs are found in the brain of normal elderly individuals. A 65-year-old man presented with autopsy-proven Lewy body pathology (LBP). He had never complained of cognitive impairments or parkinsonian motor symptoms, and he had always maintained independence in activities of daily living. Hypopigmentations in the locus coeruleus and substantia nigra were discovered during the autopsy. The patient showed severe-to-extremely severe LBs in the neocortex and limbic areas, except in the nucleus basalis of Meynert, amygdala, and brainstem, according to microscopic findings. Hence, using several of the previously known staging systems, it was difficult to classify the patient's LBP type. Furthermore, these findings were unique because they had never been observed before in iLBD.


Assuntos
Doença por Corpos de Lewy , Neocórtex , Atividades Cotidianas , Idoso , Autopsia , Encéfalo/patologia , Tronco Encefálico/patologia , Humanos , Doença por Corpos de Lewy/diagnóstico , Doença por Corpos de Lewy/patologia , Masculino , Neocórtex/patologia , Bulbo Olfatório/patologia
18.
Acta Neuropathol Commun ; 10(1): 55, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440014

RESUMO

Huntington disease is characterized by progressive neurodegeneration, especially of the striatum, and the presence of polyglutamine huntingtin (HTT) inclusions. Although HTT inclusions are most abundant in the neocortex, their neocortical distribution and density in relation to the extent of CAG repeat expansion in the HTT gene and striatal pathologic grade have yet to be formally established. We immunohistochemically studied 65 brains with a pathologic diagnosis of Huntington disease to investigate the cortical distributions and densities of HTT inclusions within the calcarine (BA17), precuneus (BA7), motor (BA4) and prefrontal (BA9) cortices; in 39 of these brains, a p62 immunostain was used for comparison. HTT inclusions predominate in the infragranular cortical layers (layers V-VI) and layer III, however, the densities of HTT inclusions across the human cerebral cortex are not uniform but are instead regionally contingent. The density of HTT and p62 inclusions (intranuclear and extranuclear) in layers V-VI increases caudally to rostrally (BA17 < BA7 < BA4 < BA9) with the median burden of HTT inclusions being 38-fold greater in the prefrontal cortex (BA9) than in the calcarine cortex (BA17). Conversely, intranuclear HTT inclusions prevail in the calcarine cortex irrespective of HTT CAG length. Neocortical HTT inclusion density correlates with CAG repeat expansion, but not with the neuropathologic grade of striatal degeneration (Vonsattel grade) or with the duration of clinical disease since motor onset. Extrapolation of these findings suggest that HTT inclusions are at a regionally-contingent, CAG-dependent, density during the advanced stages of HD. The distribution and density of HTT inclusions in HD therefore does not provide a measure of pathologic disease stage but rather infers the degree of pathogenic HTT expansion.


Assuntos
Doença de Huntington , Neocórtex , Animais , Modelos Animais de Doenças , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/patologia , Corpos de Inclusão Intranuclear/patologia , Neocórtex/patologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo
19.
Nat Commun ; 13(1): 925, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177622

RESUMO

Despite recent advances in cancer immunotherapy, certain tumor types, such as Glioblastomas, are highly resistant due to their tumor microenvironment disabling the anti-tumor immune response. Here we show, by applying an in-silico multidimensional model integrating spatially resolved and single-cell gene expression data of 45,615 immune cells from 12 tumor samples, that a subset of Interleukin-10-releasing HMOX1+ myeloid cells, spatially localizing to mesenchymal-like tumor regions, drive T-cell exhaustion and thus contribute to the immunosuppressive tumor microenvironment. These findings are validated using a human ex-vivo neocortical glioblastoma model inoculated with patient derived peripheral T-cells to simulate the immune compartment. This model recapitulates the dysfunctional transformation of tumor infiltrating T-cells. Inhibition of the JAK/STAT pathway rescues T-cell functionality both in our model and in-vivo, providing further evidence of IL-10 release being an important driving force of tumor immune escape. Our results thus show that integrative modelling of single cell and spatial transcriptomics data is a valuable tool to interrogate the tumor immune microenvironment and might contribute to the development of successful immunotherapies.


Assuntos
Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Interleucina-10/metabolismo , Células Mieloides/metabolismo , Linfócitos T/imunologia , Adulto , Idoso , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Comunicação Celular/imunologia , Linhagem Celular Tumoral , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Voluntários Saudáveis , Heme Oxigenase-1/metabolismo , Humanos , Imunoterapia/métodos , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Janus Quinases/antagonistas & inibidores , Janus Quinases/metabolismo , Masculino , Pessoa de Meia-Idade , Neocórtex/citologia , Neocórtex/imunologia , Neocórtex/patologia , Cultura Primária de Células , RNA-Seq , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Análise de Célula Única , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Técnicas de Cultura de Tecidos , Evasão Tumoral , Microambiente Tumoral/imunologia
20.
Neurobiol Dis ; 165: 105633, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35065250

RESUMO

OBJECTIVES: Acute injuries or insults to the cortex, such as trauma, subarachnoid hemorrhage, lobar hemorrhage, can cause seizures or status epilepticus(SE). Neocortical SE is associated with coma, worse prognosis, delayed recovery, and the development of epilepsy. The anatomical structures progressively recruited during neocortical-onset status epilepticus (SE) is unknown. Therefore, we constructed large-scale maps of brain regions active during neocortical SE. METHODS: We used a neocortical injury-induced SE mouse model. We implanted cobalt (Co) in the right supplementary motor cortex (M2). We 16 h later administered a homocysteine injection (845 mg/kg, intraperitoneal) to C57Bl/6 J mice to induce SE and monitored it by video and EEG. We harvested animals for 1 h (early-stage) and 2 h (late-stage) following homocysteine injections. To construct activation maps, we immunolabeled whole-brain sections for cFos and NeuN, imaged them using a confocal microscope and quantified cFos immunoreactivity (IR). RESULTS: SE in the early phase consisted of discrete, focal intermittent seizures, which became continuous and bilateral in the late stage. In this early stage, cFos IR was primarily observed in the right hemisphere, ipsilateral to the Co lesion, specifically in the motor cortex, retrosplenial cortex, somatosensory cortex, anterior cingulate cortex, lateral and medial septal nuclei, and amygdala. We observed bilateral cFos IR in brain regions during the late stage, indicating the bilateral spread of focal seizures. We found increased cFOS IR in the bilateral somatosensory cortex and the motor cortex and subcortical regions, including the amygdala, thalamus, and hypothalamus. There was noticeably different, intense cFos IR in the bilateral hippocampus compared to the early stage. In addition, there was higher activity in the cortex ipsilateral to the seizure focus during the late stage compared with the early one. CONCLUSION: We present a large-scale, high-resolution map of seizure spread during neocortical injury-induced SE. Cortico-cortical and cortico subcortical re-entrant circuits sustain neocortical SE. Neuronal loss following neocortical SE, distant from the neocortical focus, may result from seizures.


Assuntos
Neocórtex , Estado Epiléptico , Animais , Hipocampo/patologia , Camundongos , Neocórtex/patologia , Neurônios/patologia , Convulsões , Estado Epiléptico/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...